# Thunderbolt Enhanced Receptacle Test Adapter **User Manual** # **Table of Contents** | Introduction | 3 | |--------------------------------------------------------------------------------|------| | Product Inspection | 5 | | The Thunderbolt Enhanced Receptacle Test Adapter Care and Handling Precautions | 6 | | General Test Adapter, Cable, and ConnectorHandling and storage | | | Visual inspection | 8 | | Cleaning | 8 | | Making Connections | 8 | | Electrostatic Discharge Information | 9 | | User Model | 10 | | Calibration Through De-Embedding | 11 | | Mechanical and Environmental Specifications | . 12 | | Electrical Specifications | 15 | | Wilder Technologies, LLC – Limited Warranty | . 22 | | Wilder Technologies, LLC – Terms & Conditions of Sale | 23 | | Compliance with Environmental Legislation | | | Glossary of Terms | . 25 | | Index | 26 | # Introduction This user's guide documents the Thunderbolt Enhanced Receptacle Test Adapter (TBT-TPA-ER) and the associated de-embedding option. The test adapter, shown in Figure 1, tests Thunderbolt interface (TB) cables against the Thunderbolt PHY Compliance Test Specification. Calibration through de-embedding is presented on Page 11, and can be used to zero-out test adapter attributes. The TBT-TPA-ER test adapter assembly allows easy access, via SMA connections, to measure or inject Main Link signals. This test adapter also provides access to Hot Plug Detect, Power-In Force, Power-In Sense, Power-Out Force, Power-Out Sense, low-speed transmit and receive, Ground, and Ground Sense by way of a 10-position low-speed connector and a corresponding 3-position sense connector for the sense lines. Four of the pins are no-connects for future use or config positions not used in this product. NOTE: To avoid damaging the cables, use the handling techniques described in the Care and Handling section before making any connections or configuring a test setup. Always use a static-safe workstation when performing tests, as explained in the "Electrostatic Discharge Information" section. Figure 1. The Thunderbolt Enhanced Receptacle Test Adapter NOTE: The metal shell of the receptacle (TBT-TPA-ER) connector is configured at the factory to tie high-speed ground to chassis ground. The low-speed 10-position receptacle connector (Molex part number 43645-1000) and the 3-postiion receptacle sense connector (Molex part number 43645-0300) are keyed and latching. The mating plug connector housing and contact pins for 26-30awg wire are provided with each TBT-TPA-ER assembly (Molex part numbers 43640-1001 for the 10-position housing are 43640-0301 for the 3-position housing, and 43031-0011 for the 26-30awg pin contact). Replacement plug parts can be purchased through Molex distributors. NOTE: The receiver SMA connections for Thunderbolt are normally AC coupled. The Thunderbolt Enhanced Receptacle TPA does NOT have internal DC blocks. This allows for parametric testing through the TPA. Normal testing may require DC blocks such as the Pico Pulse Labs 5500 series of DC blocks. # **Product Inspection** Upon receiving the TBT-TPA-ER from Wilder Technologies, perform the following product inspection: - Inspect the outer shipping container, foam-lined instrument case, and product for damage. Retain the outer cardboard shipping container until the contents of the shipment have been inspected for completeness and the product has been checked mechanically and electrically. Use the foam-lined instrument-case for secure storage of the Wilder Technologies Thunderbolt Enhanced Receptacle Test Adapter when not in use. - Locate the shipping list and verify that all items ordered were received. - In the unlikely event that the product is defective or incomplete, the "Limited Warranty" section discusses how to contact Wilder Technologies for technical assistance and/or how to package the product for return. # The Thunderbolt Enhanced Receptacle Test Adapter Care and Handling Precautions The Thunderbolt Enhanced Receptacle Test Adapter requires careful handling to avoid damage. Improper handling techniques, or using too small a cable bend radius, can damage the coaxial cable connections within the adapter housing or the cables themselves. This can occur at any point along the cable. To achieve optimum performance and to prolong the TBT-TPA's life, observe the following handling precautions: #### CAUTION 1: Avoid Torque Forces (Twisting) While individual coaxial cables within the test adapter have some rotational freedom, twisting the TBT-TPA as a unit, with one end held stationary, in excess of +/- 90° may damage or severely degrade performance. Adherence to Caution 5 (below) helps to avoid exceeding twist limits. #### CAUTION 2: Avoid Sharp Cable Bends Never bend coaxial cables into a radius of 26 mm (1 -inch) or less. Never bend cables greater than 90°. Single or multiple cable bends must be kept within this limit. Bending the TBT-TPA cables less than a 26mm (1-lnch) radius will permanently damage or severely degrade test adapter performance. #### CAUTION 3: Avoid Cable Tension (Pull Forces) Never apply tension (pull forces) to an individual coaxial cable that is greater than 2.3 kg (5 lbs.). To avoid applying tension, always place accessories and equipment on a surface that allows adjustment to eliminate tension on the TBT-TPA and cables. Use adjustable elevation stands or apparatus to accurately place and support the TBT-TPA. #### CAUTION 4: Connect the TBT-TPA First To prevent twisting, bending, or applying tension to the coaxial cables when connecting a TBT-TPA, always attach the TBT-TPA to the device under test (DUT) or cable under test before attaching any SMA connectors. Carefully align the Thunderbolt connectors and then gently push the connectors together until fully seated. If the TBT-TPA must be turned or twisted to make connection to the DUT, avoid using the TBT-TPA housing alone to make this occur. Try to distribute the torque forces along the length of the test setup and cabling. If this is not possible, it is recommended to first loosen or disconnect the SMA connections at the TBT-TPA, make the connection to the DUT and then re-tighten or attach the test equipment leads. NOTE: Only grip the test adapter housing when inserting or extracting the TBT-TPA to or from the DUT. Pulling directly on the TBT-TPA cables or using them to insert the TBT-TPA may cause damage. # • CAUTION 5: Carefully Make SMA Connections To connect the TBT-TPA SMA connectors, follow these steps: Hold the cable stationary by grasping the cable at the black heat-shrink section near the SMA connector. - 2. Insert the mating SMA barrel and hand-tighten the free-spinning SMA nut onto the connector while avoiding pulling, bending, or twisting the TBT-TPA coaxial cable. - 3. The TBT-TPA SMA connectors have flats that accept an open-end 1/4-inch or 6.5mm wrench. When attaching instrument cables to the TBT-TPA, it is recommended that the TBT-TPA SMA connectors be mechanically held and the test leads be tightened to the equipment manufacturer's torque recommendations, normally 5 in-lbs, using a 5/16-inch open-end wrench. If the test set-up requires repositioning, first loosen or disconnect the SMA connections to avoid twisting, bending, or tension. NOTE: A drop in signal amplitude by half or 6db during the testing of a lane may indicate that a cable has been mechanically pulled free of coaxial cable connections internal to the assembly. This could be determined by checking if the cable has any lateral play relative to the TPA. This would only occur when the TPA has exceeded the pull force as specified within the mechanical specification. If the cable cannot be re-seated, the test adapter will need to be sent back to the factory for service. CAUTION 6: Independently Support Instrument Cables or Accessories Excessive weight from instrument cables and/or accessories connected to the TBT-TPA can cause damage or affect the test adapter performance. Be sure to provide appropriate means to support and stabilize all test set-up components. # General Test Adapter, Cable, and Connector Observing simple precautions can ensure accurate and reliable measurements. # **Handling and storage** Before each use of the TBT-TPA, ensure that all connectors are clean. Handle all cables carefully and store the TBT-TPA in the foam-lined instrument case when not in use, if possible. Do not set connectors contact end down. Install the SMA protective end caps when the TBT-TPA is not in use. # **Visual inspection** Be sure to inspect all cables carefully before making a connection. Inspect all cables for metal particles, scratches, deformed threads, dents, or bent, broken, or misaligned center conductors. Do not use damaged cables. # **Cleaning** If necessary, clean the connectors using low-pressure (less than 60 PSI) compressed air or nitrogen with an effective oil-vapor filter and condensation trap. Clean the cable threads, if necessary, using a lint-free swab or cleaning cloth moistened with isopropyl alcohol. Always completely dry a connector before use. Do not use abrasives to clean the connectors. Reinspect connectors, making sure no particles or residue remains. # **Making Connections** Before making any connections, review the "Care and Handling Precautions" section. Follow these guidelines when making connections: - Align cables carefully - Make preliminary connection lightly - To tighten, turn connector nut only - Do not apply bending force to cable - Do not over- tighten preliminary connections - Do not twist or screw-in cables - Use an appropriately sized torque wrench, normally set to 5 in-lbs, and do not tighten past the "break" point of the torque wrench # **Electrostatic Discharge Information** Protection against electrostatic discharge (ESD) is essential while connecting, inspecting, or cleaning the TBT-TPA test adapter and connectors attached to a static-sensitive circuit (such as those found in test sets). Electrostatic discharge can damage or destroy electronic components. Be sure to perform all work on electronic assemblies at a static-safe work station, using two types of ESD protection: - Conductive table-mat and wrist-strap combination - Conductive floor-mat and heel-strap combination When used together, both of these types provide a significant level of ESD protection. Used alone, the table-mat and wrist-strap combination provide adequate ESD protection. To ensure user safety, the static-safe accessories must provide at least 1 M $\Omega$ of isolation from ground. Acceptable ESD accessories may be purchased from a local supplier. WARNING: These techniques for a static-safe work station should not be used when working on circuitry with a voltage potential greater than 500 volts. # User Model The Thunderbolt Enhanced Receptacle TPA supports all testing of the Thunderbolt CTS PHY. It is capable of performing well beyond the scope of measurements contained in the CTS PHY, limited only by the specifications, environmental, care and handling as stated in this document. The following examples are suggestions for possible testing setups. This example shows two Thunderbolt Enhanced Receptacle TPAs testing a Thunderbolt cable: Testing of DisplayPort functionality of a Thunderbolt Cable will require the use of two TBT-TPA-ER (Enhanced Receptacle Test Adapters). NOTE: The receiver SMA connections for Thunderbolt are normally AC coupled. The Thunderbolt Enhanced Receptacle TPA does NOT have internal DC blocks. This allows for parametric testing through the TPAs. Normal testing may require DC blocks such as the Pico Pulse Labs 5500 series of DC blocks. # Calibration Through De-Embedding The TBT-ER Receptacle Test Adapter is a fully passive component for high and low-speed signal access. Therefore, calibration for the errors generated must occur within the test instrumentation that drives or looks at the response of the Thunderbolt cable. The TBT-TPA-ER has a Touchstone S4P file for de-embedding the electrical length and losses within the TPA through the TBT-TPA-ER connector pad. (Contact Wilder Technologies, <a href="mailto:support@wilder-tech.com">support@wilder-tech.com</a>, to obtain a copy of the S4P file.) The Touchstone S4P file enables the test engineer to compensate for the following six repeatable, systematic errors that occur when moving the reference plane: - Signal leakage effects: Directivity errors - Signal leakage effects: Crosstalk errors - Reflection effects: Source Impedance Mismatching errors - Reflection effects: Load Impedance Mismatching errors - Bandwidth effects: Receiver Transmission in Test Equipment errors - Bandwidth effects: Receiver Reflection-tracking in Test Equipment errors These errors are corrected on each port. Refer to the Instrument Manual for instructions on the instrument's specific de-embedding process. NOTE: The reference plane is the boundary, both physically and electrically, between the calibrated and uncalibrated portions of the circuit. Everything outside the reference plane is considered part of the DUT. Any instrument that does not use calibration or deembedding of the test fixture defines the DUT as the total of externally connected components. If the de-embedding file is not used, all of the TBT-TPA-ER and its associated coaxial cables, as well as cables connecting the TPA assembly to the test instrument, would be a part of the DUT. Non-repeatable errors, such as drift or random errors, can be reduced but not corrected. Drift errors aggregate over time or with environmental changes such as temperature shift. To eliminate drift errors, perform an instrumentation-level calibration. A random error cannot be corrected through calibration since the error occurred randomly. Random errors are typically associated with either test instrument noise or test repeatability problems. Reduce test instrument noise by increasing source power, lowering the IF bandwidth, or averaging results over multiple sweeps. Reduce test repeatability problems through the use of a torque wrench or, again, by averaging over multiple sweeps. # Mechanical and Environmental Specifications NOTE: All specifications in this manual are subject to change. **Table 1. General Specifications** | ITEM | DESCRIPTION | |-----------------------------------------|-------------------------------------------------------------| | Usage Environment | Controlled indoor environment | | Test Adapter Length (w/standard cables) | 104.1 mm +/- 2 mm (4.1 inches +/08 inches) (Characteristic) | | Operating Temperature | 0°C to +55°C (32°F to +131°F) (Characteristic) | | Storage Temperature | -40°C to +70°C (-40°F to +158°F) (Characteristic) | #### **TBT-TPA-ER Cable Pin-out** The TBT-TPA-ER provides eight SMA connectors (dual-Port signals), one low-speed connector, and one sense connector. Labels clearly mark each cable or connector. The following figure refers to pin-description tables for each of the three connector types. Figure 2. Cable Connectors (TBT-TPA-ER shown) Table 2. SMA Cable Connectors (High-Speed) | LABEL | COLOR ID FOR DIFFERENTIAL PAIR | DESCRIPTION | |-------|--------------------------------|-------------------------------| | Tx0_P | White | Differential Transmit Data 0+ | | Tx0_N | White | Differential Transmit Data 0- | | Rx0_P | Blue | Differential Receive Data 0+ | | Rx0_N | Blue | Differential Receive Data 0- | | Tx1_P | Yellow | Differential Transmit Data 1+ | | Tx1_N | Yellow | Differential Transmit Data 1- | | Rx1_P | Green | Differential Receive Data 1+ | | Rx1_N | Green | Differential Receive Data 1- | Table 3. TBT-TPA-ER 10-position Cable Connector "P2" (Low-Speed) | LABEL | PIN NO. | COLOR ID FOR TPA | DESCRIPTION | |-----------|---------|------------------|-----------------------------------------------------| | HPD | Pin 1 | Black | Hot Plug Detect | | 1-F (PIF) | Pin 2 | Black | Main connector pin 1 force, was Power-<br>In Force | | 20F (POF) | Pin 3 | Black | Main connector pin 20 force, was<br>Power-Out Force | | LST | Pin 4 | Black | Low-speed Transmit | | CF1 | Pin 5 | | No-Connect | | LSR | Pin 6 | Black | Low-speed Receive | | CF2 | Pin 7 | | No-Connect | | GND | Pin 8 | Black | Ground | | NC | Pin 9 | | No-Connect | | NC | Pin 10 | | No-Connect | Table 4. TBT-TPA-ER 3-position Cable Connector "P3" (Sense) | LABEL | PIN NO. | COLOR ID FOR TPA | DESCRIPTION | |-----------|---------|------------------|-----------------------------------------------------| | 20S (POS) | Pin 1 | Black | Main connector pin 20 sense, was<br>Power-Out Sense | | GDS | Pin 2 | Black | Ground Sense | | 1-S (PIS) | Pin 3 | Black | Main connector pin 1 sense, was<br>Power-In Sense | Table 5. Thunderbolt Enhanced Receptacle TPA Pin Assignments | Pin Description | Connector<br>Pin Number | Destination<br>Number<br>(Source/Sink) | Color Identification<br>(Plug/Receptacle) | |--------------------------------------------------------------------------|-------------------------|----------------------------------------|--------------------------------------------------| | 1-F (was Power-In Force),<br>filtered and 1-S (was Power-In<br>Sense) | 1 | P2 Pin 2 (1-F)<br>P3 Pin 3 (1-S) | Black Insulation (1-F)<br>Black Insulation (1-S) | | Hot Plug Detect | 2 | P2 Pin 1 (HPD) | Black Insulation | | ort 0 transmit positive | 3 | Tx0_P | White Label | | Port 0 receive positive | 4 | Rx0_P | Blue Label | | ort 0 transmit negative | 5 | Tx0_N | White Label | | ort 0 receive negative | 6 | Rx0_P | Blue Label | | Grounded through 12 ohms | 7 | Ground | N/A | | Grounded through 12 ohms | 8 | Ground | N/A | | ow-speed Receive | 9 | P2 Pin 6 (LST) | Black Insulation | | lo-connect, internally erminated to 50 ohms | 10 | No-Connect | N/A | | ow-speed Transmit | 11 | P2 Pin 4 (LSR) | Black Insulation | | No-connect, internally terminated to 50 ohms | 12 | No-Connect | N/A | | Grounded through 12 ohms | 13 | Ground | N/A | | Grounded through 12 ohms | 14 | Ground | N/A | | Port 1 transmit positive | 15 | Tx1_P | Yellow Label | | Port 1 receive positive | 16 | Rx1_P | Green Label | | Port 1 transmit negative | 17 | Tx1_N | Yellow Label | | Port 1 receive negative | 18 | Rx1_N | Green Label | | Ground Sense, (and Return<br>current Ground, filtered ) | 19 | P3 Pin 2 (GDS) | Black Insulation | | 20F (was Power-Out Force),<br>iltered, and 20S (was Power-<br>Out Sense) | 20 | P2 Pin 3 (20F)<br>P3 Pin 1 (20S) | Black Insulation (20F)<br>Black Insulation (20S) | | Ground | 7,8,13,14,19 | P2 Pin 8 (GND) | Black Insulation | | Config 1 | 4 | No-Connect | N/A | | Config 2 | 6 | No-Connect | N/A | # **Electrical Specifications** NOTE: All specifications in this manual are subject to change. **Table 6. Electrical Specifications** | SPECIFICATION | MINIMUM | TYPICAL | MAXIMUM | NOTES | |------------------------------------------------------|---------|------------|---------|-------------------------------------------------------------------------------------------------------------| | Differential Impedance<br>(ohms), at 100ps Rise Time | 95 | | 105 | All Ports, Receptacle and Plug, excluding<br>Thunderbolt connector | | Impedance (ohms),<br>at 100ps Rise Time | 47.5 | | 52.5 | All Ports, Receptacle and Plug, excluding<br>Thunderbolt connector | | Intra-lane Skew (ps) | -6 | | 6 | Within each differential pair, including mated Receptacle and Plug | | Inter-lane Skew (ps) | -20 | | 20 | Between all differential pairs, including mated Receptacle and Plug | | NEXT (db),<br>at 5.0 GHz,<br>at 15.0 GHz | -35 | -42<br>-38 | | Between differential pairs, single aggressor, without TB connector, with three-inch cables and terminations | | Current Carrying (A) | 1.2 | | | Power-in Force, Power-out Force, and<br>Return | Figure 3. Typical mated pair 10 Gb/s eye diagram, with calibration (top) and without calibration (bottom). | Name | Measurement Result | |-----------------------|--------------------| | Eye Level Zero(mV) | 15.76 | | Eye Level One(mV) | 377.46 | | Eye Level Mean(mV) | 196.61 | | Eye Amplitude(mV) | 361.70 | | Eye Height(mV) | 309.53 | | Eye Height(db) | -5.09 | | Eye Width | 9.71e-011 | | Eye Opening Factor | 0.86 | | Eye Signal_to_Noise | 16.42 | | Eye Duty Cycle Dist | -3.85e-014 | | ye Duty Cycle Dist(%) | -0.04 | | Eye Rise Time (20-80) | 2.37e-011 | | Eye Fall Time (80-20) | 2.37e-011 | | Eye Jitter(PP) | 2.88e-012 | | Eye Jitter(RMS) | 6.84e-013 | Figure 4. Typical mated pair 10 Gb/s eye measurements, with calibration (top) and without calibration (bottom). Figure 5. Typical mated pair balanced insertion loss, without calibration. Figure 6. Available S4P showing balanced insertion loss of ER receptacle from connector traces to SMAs. Figure 7. Typical mated pair balanced return loss, without calibration. Figure 8. Available S4P showing balanced return loss of ER receptacle from connector traces to SMAs. Figure 9. Typical mated board only return loss, receptacle, terminations replacing main connectors. Figure 10. Typical Differential TDR of TPA-ER connected to TPA-P at 100 ps Rise Time. Note- RX0 has 1k ohm sense lines on the plug TPA that impacts the resulting impedance. Figure 11. Typical Differential NEXT for Receptacle TPA, without connector (top) and with mated connectors, high-crosstalk lanes, all lanes terminated at both ends. # Wilder Technologies, LLC - Limited Warranty Wilder Technologies, LLC warrants that each Test Adapter, 1) is free from defects in materials and workmanship and, 2) conforms to Wilder Technologies specifications for a period of 12 months. See Consumable and Fragile Material Warranty for exceptions to the 12 month warranty The warranty period for a Test Adapter is a specified, fixed period commencing on the date of ship from Wilder Technologies, LLC. If you did not purchase your Test Adapter directly from Wilder Technologies, LLC, the serial number and a valid proof of purchase will be required to establish your purchase date. If you do not have a valid proof of purchase, the warranty period will be measured from the date of ship from Wilder Technologies, LLC. If, during the warranty period, the Test Adapter is not in good working order, Wilder Technologies, LLC will, at its option, repair or replace it at no additional charge, except as is set forth below. In some cases, the replacement Test Adapter may not be new and may have been previously installed. Regardless of the Test Adapter's production status, Wilder Technologies, LLC appropriate warranty terms apply. #### **Consumable and Fragile Material Warranty** Wilder Technologies, LLC warrants that consumable materials and all fragile materials supplied by Wilder Technologies, LLC either as part of an instrument or system, or supplied separately, will be free from defects in material and workmanship at the time of shipment. #### **Extent of Warranty** The warranty does not cover the repair or exchange of a Test Adapter resulting from misuse, accident, modification, unsuitable physical or operating environment, improper maintenance by you, or failure caused by a product for which Wilder Technologies, LLC is not responsible. The warranty is voided by removal or alteration of Test Adapter or parts identification labels. The initial three months are unconditional; the remaining months excludes plugs, receptacles and SMA connectors. Connectors are wear items and excluded from the warranty after the initial three months. These warranties are your exclusive warranties and replace all other warranties or conditions, express or implied, including but not limited to, the implied warranties or conditions or merchantability and fitness for a particular purpose. These warranties give you specific legal rights and you may also have other rights which vary from jurisdiction to jurisdiction. Some jurisdictions do not allow the exclusion or limitation of express or implied warranties, so the above exclusion or limitation may not apply to you. In that event, such warranties are limited in duration to the warranty period. No warranties apply after that period. #### **Items Not Covered by Warranty** Wilder Technologies, LLC does not warrant uninterrupted or error-free operation of a Test Adapter. Any technical or other support provided for a Test Adapter under warranty, such as assistance via telephone with "how-to" questions and those regarding Test Adapter set-up and installation, will be provided **WITHOUT WARRANTIES OF ANY KIND**. #### **Warranty Service** Warranty service may be obtained from Wilder Technologies, LLC by returning a Wilder Technologies, LLC Returns Material Authorization and the Test Adapter to Wilder Technologies, LLC during the warranty period. To obtain RMA number, contact <a href="mailto:support@wilder-tech.com">support@wilder-tech.com</a>. You may be required to present proof of purchase or other similar proof of warranty entitlement. You are responsible for any associated transportation charges, duties and insurance between you and Wilder Technologies, LLC. In all instances, you must ship Test Adapters in Wilder Technologies, LLC approved packaging. Information on packaging guidelines can be found at: <a href="https://www.wilder-tech.com">www.wilder-tech.com</a>. Wilder Technologies, LLC will ship repaired or replacement Test Adapter Delivery Duty Prepaid (DDP) and will pay for return shipment. You will receive title to the repaired or replacement Test Adapter and you will be the importer of record. # Wilder Technologies, LLC - Terms & Conditions of Sale - Other Documents: This Agreement may NOT be altered, supplemented, or amended by the use of any other document(s) unless otherwise agreed to in a written agreement signed by both you and Wilder Technologies, LLC. If you do not receive an invoice or acknowledgement in the mail, via e-mail, or with your Product, information about your purchase may be obtained at <a href="mailto:support@wilder-tech.com">support@wilder-tech.com</a> or by contacting your sales representative. - 2. Payment Terms, Orders, Quotes, Interest: Terms of payment are within Wilder Technologies, LLC's sole discretion, and unless otherwise agreed to by Wilder Technologies, LLC, payment must be received by Wilder Technologies, LLC prior to Wilder Technologies, LLC's acceptance of an order. Payment for the products will be made by credit card, wire transfer, or some other prearranged payment method unless credit terms have been agreed to by Wilder Technologies, LLC. Invoices are due and payable within the time period noted on your invoice, measured from the date of the invoice. Wilder Technologies, LLC may invoice parts of an order separately. Your order is subject to cancellation by Wilder Technologies, LLC, in Wilder Technologies, LLC's sole discretion. Unless you and Wilder Technologies, LLC have agreed to a different discount, Wilder Technologies, LLC's standard pricing policy for Wilder Technologies, LLC-branded systems, which includes hardware, software and services in one discounted price, allocates the discount off list price applicable to the service portion of the system to be equal to the overall calculated percentage discount off list price on the entire system. Wilder Technologies, LLC is not responsible for pricing, typographical, or other errors in any offer by Wilder Technologies, LLC and reserves the right to cancel any orders resulting from such errors. - 3. Shipping Charges; Taxes; Title; Risk of Loss: Shipping, handling, duties and tariffs are additional unless otherwise expressly indicated at the time of sale. Title to products passes from Wilder Technologies, LLC to Customer on shipment from Wilder Technologies, LLC's facility. Loss or damage that occurs during shipping by a carrier selected by Wilder Technologies, LLC is Wilder Technologies, LLC's responsibility. Loss or damage that occurs during shipping by a carrier selected by you is your responsibility. You must notify Wilder Technologies, LLC within 7 days of the date of your invoice or acknowledgement if you believe any part of your purchase is missing, wrong or damaged. Unless you provide Wilder Technologies, LLC with a valid and correct tax exemption certificate applicable to your purchase of Product and the Product ship-to location, you are responsible for sales and other taxes associated with the order. Shipping dates are estimates only. - 4. WARRANTY: WILDER TECHNOLOGIES, LLC, warrants that the item(s) manufactured under the Buyer's contract shall be free from defects in materials and workmanship furnished by WILDER TECHNOLOGIES, LLC, and shall conform to the applicable drawings and specifications. WILDER TECHNOLOGIES, LLC'S liability herein, for breach of warranty, contract or negligence in manufacturing, shall be limited to repair or replacement. Repair or replacement of defective items will be applicable only if the Buyer notifies WILDER TECHNOLOGIES, LLC, by written notice within 30-days of delivery. All claims shall be addressed to: <a href="mailto:support@wilder-tech.com">support@wilder-tech.com</a> or WILDER TECHNOLOGIES, LLC, 6101A East 18th Street, Vancouver, Washington 98661 U.S.A.; ATTENTION: Customer Service Manager. WILDER TECHNOLOGIES, LLC, reserves the right to inspect at the Buyer's plant all items claimed to be defective or nonconforming prior to authorizing their return. WILDER TECHNOLOGIES, LLC, assumes no liability for the results of the use of its components in conjunction with other electric, electronic or mechanical components, circuits and/or systems. The foregoing constitutes the sole and exclusive remedy of the Buyer and the exclusive liability of WILDER TECHNOLOGIES, LLC, and is IN LIEU OF ANY AND ALL OTHER WARRANTIES, STATUTORY, IMPLIED OR EXPRESSED AS TO MERCHANTABILITY, FITNESS FOR THE PURPOSE SOLD, DESCRIPTION, QUALITY, and PRODUCTIVENESS OR ANY OTHER MATTER. Without limiting the foregoing, in no event shall WILDER TECHNOLOGIES, LLC, be liable for loss of use, profit or other collateral, or for special and/or consequential damages. - 5. RETURNED GOODS: WILDER TECHNOLOGIES, LLC, will accept only those goods for return that have been authorized for return. All goods authorized for return shall be assigned a Returned Material Authorization (RMA) Number. The RMA Number shall be clearly marked on the shipping container(s) and all documentation accompanying the goods authorized for return. The RMA Number shall be assigned by WILDER TECHNOLOGIES, LLC pursuant to the conditions set forth in Paragraph 4, WARRANTY. - 6. UNITED STATES GOVERNMENT CONTRACTS: In the event this offer is accepted under Government contract, WILDER TECHNOLOGIES, LLC, agrees to accept clauses required by Government regulations and to waive WILDER TECHNOLOGIES, LLC conditions inconsistent therewith. WILDER TECHNOLOGIES, LLC, certifies that it is a regular manufacturer or dealer of the goods and/or services offered herein and that the prices offered do not exceed those charged to any customer for like quantities, services or materials under the same conditions. # Compliance with Environmental Legislation Wilder Technologies, LLC, is dedicated to complying with the requirements of all applicable environmental legislation and regulations, including appropriate recycling and/or disposal of our products. # **WEEE Compliance Statement** The European Union adopted Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE), with requirements that went into effect August 13, 2005. WEEE is intended to reduce the disposal of waste from electrical and electronic equipment by establishing guidelines for prevention, reuse, recycling and recovery. Wilder Technologies has practices and processes in place to conform to the requirements in this important Directive. In support of our environmental goals, effective January 1<sup>st</sup>, 2009 Wilder Technologies, LLC has partnered with E-Tech Recycling of Beaverton, Oregon, <a href="https://www.etechrecycling.com">www.etechrecycling.com</a>, to recycle our obsolete and electronic waste in accordance with the European Union Directive 2002/96/EC on waste electrical and electronic equipment ("WEEE Directive"). As a service to our customers, Wilder Technologies is also available for managing the proper recycling and/or disposal of all Wilder Technologies products that have reached the end of their useful life. For further information and return instructions, contact <a href="mailto:support@wilder-tech.com">support@wilder-tech.com</a>. # Glossary of Terms | TERMINOLOGY | DEFINITION | |---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Aggressor | A signal imposed on a system (i.e., cable assembly) to measure response on other signal carriers. | | Daisy-chain | Thunderbolt link between multiple boxes, going from box to box to box, detachable by an end user. A Thunderbolt cable-connector assembly for the box-to-box connection shall have two ports. DisplayPort Sinks can only be at the end of the Daisy-chain. | | Dual-protocol | Thunderbolt runs PCIe and DisplayPort protocols | | ТВТ-ТРА | Thunderbolt Test Point Access. A specialized assembly that interfaces to a Thunderbolt receptacle or plug and enables access to signals for measurement or stimulation. | | Informative | The designation of a test that is not required for compliance but is considered important from a characterization standpoint. It is provided for informational purposes only. | | Port | Bidirectional channel for isochronous stream transport from Thunderbolt Source to Thunderbolt Sink. Thunderbolt contains two ports in this application. | | Normative | The designation of a test that is required for compliance. | | Victim | A signal carrier on a system that has a response imposed on it by other signals in the system. | # Index | AC coupled, 4, 10 | Mechanical and Environmental Specifications, 12 | |----------------------------------------------------|--------------------------------------------------------| | Cable Bend Limits, 6 | Molex part numbers, 4 | | Cable Tension (Pull Forces), 6 | Power-In, 3 | | Cable Twisting (Torque), 6 | Power-Out, 3 | | Calibration Through De-Embedding, 11 | Product Inspection, 5 | | Care and Handling, 6 | product return, 5 | | Cleaning, 8 | pull force, 7 | | Compliance | Random Errors, 11 | | WEEE, 24 | Receiver Reflection-Tracking in Test Equip. Errors, 11 | | Connections | Receiver Transmission in Test Equipment Errors, 11 | | SMA, 6, 7 | secure storage, 5 | | TBT-TPA to DUT, 6 | Sense connector, 3, 4, 12 | | Crosstalk Errors, 11 | Sense Connector Part Numbers, 4 | | DC blocks, 4, 10 | SMA connectors, 12 | | Directivity Errors, 11 | Source Impedance Mismatching Errors, 11 | | Drift Errors, 11 | Support, 23 | | DUT, 11 | Supporting Instrument Cables or Accessories, 7 | | Electrical Specifications, 15 | Tables | | Electrostatic Discharge Information (ESD), 9 | Electrical Specifications, 15 | | Environmental Changes, 11 | General Specifications, 12 | | Errors | SMA Cable Connectors (High-Speed), 13 | | Crosstalk, 11 | TBT-TPA 10-Position Cable Connector, 13 | | Directivity, 11 | TBT-TPA 3-Position Cable Connector, 13 | | Drift, 11 | Thunderbolt Enhanced Receptacle TPA Pin | | Load Impedance Mismatching, 11 | Assignments, 14 | | Random, 11 | TBT-TPA-ER Cable Pinout, 12 | | Receiver Reflection-tracking in Test Equipment, 11 | Terms and Conditions of Sale, 23 | | Receiver Transmission in Test Equipment, 11 | Test Instrument Noise, 11 | | Source Impedance Mismatching, 11 | Test Repeatability Problems, 11 | | ESD protection, 9 | Testing DisplayPort Functionality, 10 | | Figures | Thunderbolt CTS PHY, 10 | | Cable Connectors, 12 | Thunderbolt Enhanced Receptacle TPAs User | | The Thunderbolt Enhanced Receptacle Test | Example, 10 | | Adapter, 3 | Thunderbolt PHY Compliance Test Spec., 3 | | Glossary, 25 | User Model Example, 10 | | Ground, 3 | Visual inspection, 8 | | Ground Sense, 3 | Warranty, 22 | | Handling and storage, 8 | Web Sites | | Hot Plug Detect, 3 | support@wilder-tech.com, 22, 23 | | Load Impedance Mismatching Errors, 11 | www.etechrecycling.com, 24 | | Low-Speed connector, 3, 4, 12 | www.wilder-tech.com, 22 | | Low-Speed Connector Part Numbers, 4 | WEEE, 24 | | Making Connections, 8 | <i>,</i> | # Visit our website at www.wilder-tech.com Wilder Technologies, LLC 6101A East 18<sup>th</sup> Street Vancouver, WA 98661 Phone: 360-859-3041 Fax: 360-859-3105 www.wilder-tech.com ©2013 Wilder Technologies, LLC Document No. 910-0028-100 Rev. A Created: 2/6/2013